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ABSTRACT

The simplest version of the Lauritzen-Hoffman (LH) model of polymer
crystallization which applies to infinitely long model polymer molecules
crystallizing on an existing substrate of infinite width is reexamined. The
mathematical expressions for the model free energy barriers are observed to
take on negative values at high supercooling. Since such negative barriers
appear to be physically unrealizable for the crystallization process, the LH
model is extended only by imposing a mathematical constraint on the
expressions for the barriers to forbid them from ever being negative. The
extended model contains one parameter 7 which varies from zero to one and is
analogous to the parameter 0 of the LH model. For all values of y less than
one, the extended model predicts a finite lamellar thickness at every
supercooling; moreover, this thickness, at large undercooling decreases
monotonically with increasing undercooling in agreement with experiment but in
marked contrast to the LH model which exhibits the well-known 61 catastrophe.
The relative insensitivity of the calculated lamellar thicknesses to the
parameter 7 supports the use of low parameter values such as zero as a first
approximation for mathematical convenience in practice.
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I. INTRODUCTION

Recently, the isothermal (unoriented) crystallization of poly(vinylidene)

fluoride (PVF2 ) from the melt in the presence of a high static electric field

has been studied experimentally and theoretically as a simple model system for

the investigation of the structure-property relationships of this

polymer.I .1,1.2 Of the four well-known crystalline forms a, P, 7, and 6 (or

II, I, III, and IV) of PVF 2 ; however, the phase which has the greatest

potential for applications via its large spontaneous polarization 1 .2 is not

produced on crystallization from the melt. This phase--namely 6--has been

observed to exhibit highly oriented growth (mixed with some unoriented a phase

growth) during the initial stages of crystallization from

solution under a high static field of highly plasticized PVF2 (i.e. of a

concentrated solution of tricresyl phosphate and PVF2 in which the tricresyl

phosphate content decreases by evaporation); at longer times, the formation of

the nonpolar a phase predominates.1.3 The decrease in plasticizer content and

the subsequent crystal growth behavior implies that the local electric field

in the solution region changes. As part of the continuing effort simply to

understand the structure-property relationships of PVF2 and because of its

practical importance, our ultimate goal--despite the complexity of the system

described--is to develop a theory or model which can account for its

crystallization behavior.

As in the case of isothermal crybtallization of a and 7 phase from the

melt in an electric field,1 "2 a theory of isothermal crystallization of a, f,

and 6 phase from concentrated solution in an electric field would be based on

"classical" and "polymer" theories of nucleation and growth in the absence of

an applied field. Most importantly, the nucleation barrier or activation free

energy barrier for nucleation would certainly be different in the presence of

the field than in its absence; and this barrier has been seen to be of

fundamental importance in the theories of polymer crystallization, the

simplest of which is the LH or Lauritzen-Hoffman theory.1 -3 One possibly
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unrealistic feature which seems to have been incorporated into this theory in

order to simplify it is that the nucleation barrier is not constrained in the

theory to take on only nonnegative values. The word "barrier" connotes a

positive quantity, and furthermore, the LH theory is based on transition state

theory in which the barrier corresponds to an intermediate configuration or

transition state of the system which is at a free energy maximum relative to

some initial and final state of the system.4 Moreover, the LH theory

exhibits, in contrast with experiment, the 68 catastrophe wherein the

calculated average lamellar thickness I suddenly passes through a minimum and

becomes infinite at a temperature, Tc, corresponding to a moderately large

undercooling; and, in fact, the nucleation barrier in this theory is positive

for all T > Tc, is zero at T - Tc, and is negative for all T < Tc for the

special case which Lauritzen and Hoffman 4,5 have recently considered.

Therefore, prior to developing an extension of the LH theory which would

involve ascertaining the effect of an electric field on the nucleation

barrier, we try to extend the LII theory to larger undercooling by

incorporating into it the assumption that free energy barriers cannot be

negative. Note that, unlike in the LH theory of polymer crystallization,

barriers in classical nucleation theory are never negative; however, the

classical theory does not explicitly take into account polymer chain folding,

and for that reason, we have not yet considered modifying the Marand and Stein

theory1 .1 of crystallization from the melt to treat the PVF 2/tricresyl

phosphate crystallizing solution.

The remainder of this paper is organized as follows. In Section II, the

LH model is described. The kinetic treatment of the LH model is given in

Section III. The rate constants needed for this treatment are determined in

Section IV. Next, our extension of the LH model is described in Section V;

the conditions which determine the sign of A01 , the free energy of formation

of that portion of a model polymer molecule which crystallizes first on an

existing crystal, are found in Section VI. A summary of the expressions for

the barriers in our model is given in Section VII along with the expressions
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for the average lamellar thickness. In Section VIII, the variable

transformations required as a preliminary to numerical integration are

introduced. Results and discussion appear in Section IX, and conclusions are

given in Section X.

II. THE LAURITZEN-HOFFMAN MODEL

The model to be extended is one version '
2 of the well-known Lauritzen-

Hoffman (LH) model of polymer crystallization. Our description of this

version is as follows. The model polymer molecules are assumed to be

infinitely long and crystallize on an existing crystalline face or substrate

which is assumed to be infinitely wide (i.e. the fact that its width is finite

is ignored). A sequence of length I of polymer segments of width a and

thickness b as well as the volume associated with that sequence--which is

taken to be a parallelepiped of length 1, width a, and thickness b--is

designated as a stem. Only stems of length I can crystallize on an existing

face of length 2, but the length 2, the lamellar thickness, can vary from

crystal to crystal. (Of course, a and b cannot vary from face to face.) Any

sequence of length I of segments of a model molecule can be placed first on a

given face and upon placement, is designated as the first stem. The free

energy of formation of the first stem is

A01 -0 - A01 - 0 or A01 - 2aboa + 2bla - ablAf

where Af > 0 is the free energy of fusion per unit volume at a temperature T

below the melting point T; of a crystal of very large I (Af - 0 at T - T;),

where a is the lateral surface free energy per unit area (i.e. that associated

with the surfaces of area bi and al of a stem), and where a' is the surfacee
free energy per unit area associated with the cilium that protrudes through

each of the surfaces of area ab of the first stem. Recently, 1 3 a has been
e

assumed to be zero; generally, one can have6 0 : a' < a All surface freee ie

energies per unit area in the model are assumed to be independent of T and A.
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(See Figure 2(a) of Reference 1 or Figure 22 of Reference 2.) The placement

of each subsequent stem involves:

1. the destruction of the cilium associated with one of the surfaces of

area ab of an adjacent stem already crystallized,

2. an adjacent reentry and the formation of a tight fold associated with

two surfaces of area ab, and

3. the formation of a cilium associated with the remaining surface of

area ab of the stem being placed.

Only adjacent reentry and hence only tight folding is incorporated in this

version of the model.

The free energy of formation of the vth stem (v > 1) is therefore

A0 v - - -aba' + 2abae + aba' - ablAf

or

Av - A l - 2 abo'e - ablAf - -E

where A0V is the free energy of formation of a group of v stems (relative to

A0 - 0) and where ae is the surface free energy per unit area associated with

half of a fold. Iteration of Ao, - AOM-l - E (v > 1) gives

A - (v-l)E

- 2bla + 2aba' - 2aba + vab(2a -lAf).

In order that stem additions subsequent to the placement of the first stem be

thermodynamically favorable, i.e. in order that they would in fact occur, one

2a
must impose the constraint E > 0 and consequently I > An. By contrast,

can be positive, zero, or negative; E > 0 guarantees that A0I < 0 will occur

for finite v. Note the sign conventions for A01 and E.
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III. THE KINETIC TREATMENT OF THE LAURITZEN-HOFFMAN MODEL

Our description of the kinetic treatment1'2 of the LH model is as

follows. The following assumptions are made:

1. Assume that transition state theory can be utilized to describe the

kinetics of the LH model of polymer crystallization.

2. Assume that the formation (crystallization) of a single stem is an

elementary process or elementary reaction; that the destruction

(melting) of a single stem is an elementary process or elementary

reaction; and that transition state theory can be applied to these

two elementary processes with a single transition state corresponding

to a relative free energy maximum or barrier thus occurring between

each two integral values of v on a plot of A0 vs. v.

3. Assume that only one stem at a time can be formed or destroyed.

The kinetic problem is to derive an expression for the net rate Sv,(X,T)

at which stems of length I (and width a) pass over or surmount the vth free

energy barrier at temperature T. The problem requires consideration of the

following set of connected elementary reactions
A

0~ 1 2 3 4 ...

where A is the rate constant for the forward reaction v - v+l (v 1) and B is

that for the reverse reaction v+l - i(v~l), and where A0 and B, are the

analogous rate constants for the v-0 v-1 reactions. Solution1 of this

problem in the steady-state approximation gives

NoA0 (A-B)
S (1,T) - A-B+B S(1,T)

for all v, where No is the number of sites or locations available for the

placement of a first stem. The total net rate at which stems (i.e. the net

rate including stems of all possible values of 1) pass over the vth barrier at

temperature T is given, for all v, by
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STotal(T) -- S(2,T)

where 1 is the smallest allowed value of I which satisfies the constraint

2 > --e. Note that I is a discrete variable--the smallest increment in I that

can be made is the monomer repeat length Iu* To find 21, first write I - mlu,

2a
where m is a positive integer and then realize that, since I must exceed Af'

the smallest value of m must be equal to the smallest integer greater than (
2ae/Af. Therefore, 1 - l+E(x) Ju' where x - and E(x) designates the

1 1" - 2u

u
2ae

integer part of x. Substituting Iu - -e into the expression for 21 gives 21

- [ fJ. To a good approximation, x 1 (i.e. x is sufficiently
2a

greater than 1) so that I1  e

Finally, one assumes that S(1,T) -S(,T)dX; and the

I 1. u 1 1

kinetically-determined average lamellar thickness is then given by

k I S(I,T) di
(T) - 1 S( ,T) di

IV. DETERMINATION OF THE RATE CONSTANTS

To obtain expressions for A0 , B1 , A1 and B, one must first determine

expressions for the free energy barriers for the relevant reactions v ii+l (v

0). Let E1 be the free energy barrier to the destruction of the first stem;

then A01+ E1 is the barrier to the formation of the first stem in order that

(AOI+EI) - E1 - 6i" Let E2 be the free enrgy barrier to the formation of

each subsequent stem; then E + E2 is the barrier to the destruction of each

such stem in order that (E+E2 ) - E2 - E. Now one does not know the free

energy barrier to the formation of the first stem. At least, one does know

that it depends on what length ' of a fully adsorbed stem of length I
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actually crystallizes before the barrier is surmounted. If 2' - 0, then none

of the free energy of fusion is released before the barrier is surmounted, and

clearly, A01 + E- 2aba'+2b2a and El - ablAf. In general then, for

0 f 2' : 2, AO1+EI - 2aba; + 2b2a - abl'Af and E- ab(I-2')Af. Since 2' is
2'

unknown, a parameter -- with 0 0 : 1, is introduced in order that all

possible so-called apportionments of the free energy of fusion ablAf between

the rate constants for the formation and destruction of a first stem (i.e. for

the forward and reverse reactions 0 1 1) can be considered. Thus,

AO 1+ E 1 - 2aba; + 2b2a - OablAf and El - (1-0) abiAf.

Note that the greater the amount OablAf of the free energy of fusion which is

in fact "apportioned" (i.e. the greater the value of 0 or '), the smaller the

value of both A01 + El and E1 (for a given 2 and T). A very similar

interpretation of 0 has been discussed recently.
3

Similarly, for each subsequent stem, let 2" (0 : 2" : 2) be the length of

a fully adsorbed stem which actually crystallizes before the barrier to the

formation of the stem is surmounted. Then E2 -
2 aba e ab2"Af and E + E2 -

ab(2-2")Af. Define the apportionment parameter -m with 0 5 0 : 1 so that

E2 -
2 aba e - Oab2Af and E + £2 " (1-0) ablAf.

Finally, utilizing transition state theory,

A kTe (Al+EI+A)/kT e -(AI+EI)/kT

B El/kT A - E2 /kT B e- (E+E 2 ) / k T

where At is the contribution to each barrier as a result of retardations in

the transport of a polymer chain through the liquid to the substrate or vice
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versa. Note that does not depend on 0 and that does not depend on 0 as
A AO

required.

V. THE EXTENSION OF THE LAURITZEN-HOFFMAN MODEL

As implied throughout the above discussion, the application of transition

state theory to the elementary processes of single stem formation and

destruction presumes that there is a single relative free energy maximum4 or

barrier between each two integral values of v on a plot of A0 vs. v.

Consequently, AoI+EI, El, E2 , and E+E2 should never be negative. learly, EI-

(1-4) ablAf and E+E2 - (l-O)ablAf are never negative; however, the expressions

given above for AoI+El and E2 can be negative. In fact, E2, for example, is

negative for all I such that -e < 1 5 - for a given Af, 0, and ae' We

propose to extend the LH model by incorporating into the model the assumption

that free energy barriers cannot be negative, i.e. only apportionments of the

free energy of fusion which result in a nonnegative barrier will be allowed.

In order to incorporate this constraint into the model, first note that

Aol+EI - 2aba' + 2bla - OablAf is never negative when A01 is positive since

then, ablAf < 2aba' + 2bla always holds and OabAf < 2aba' + 2bla follows.e e

However, when A01 is negative, the expression 2aba' + 2bla - OablAf can bee

negative. The requirement that A0 + El : 0 hold when A01 is negative implies

that one is not allowed to apportion all of the free energy of fusion ablAf

when A01 is negative. If the amount OablAf of the free energy of fusion which

is apportioned were to exceed 2aba' + 2bla, then Ao1+EI would be negative.e

The maximum amount which can be apportioned is indeed 2aba e + 2bla, and

therefore one has, when A01 < 0,

,&I+EI - (2aba' + 2bla)
e

where is an apportionment parameter with 0 :5 1. Using (AO,+EI) -E1 -

A01 or El - (AO1+EI) - A01 gives

E- e(2abae + 2b2a) - (2abae + 2blo-ablAf) - ab1Af-(l-e)(2abaG+ 2b2a).
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Observe that the requirement that AO1+EI 2 0 holds when A01 is negative is

equivalent to the physically realistic requirement that the barrier El to the

destruction of the first stem cannot be smaller than the free energy increase

(-AO, ) that occurs upon its destruction. (Note that ab1Af-(2aba'+2b~a) -

-A01.) Also, this physically realistic requirement implies that an adsorbed

first stem cannot completely crystallize before the barrier to the formation

of that stem is surmounted, i.e. that the upper limit on I' is less than I

when A01 is negative. (This upper limit on I' is determined later.) For A01

> 0, the expressions A0 1 + El - 2aba' + 2bla - OablAf and El - (l-O)ab2Af

still hold with 0 4 1 and 0 A' s 2.

At this point, a simple change of variable is introduced for convenience.

Define A - i- with 0 S A 5 1.

Now our approach would appear to have introduced another parameter A in

addition to 4, but this is not the case. To see this, first observe that when

A01 is positive, the free energy of fusion which can be apportioned is ablAf,

the amount in fact apportioned is OablAf, and the fraction of the free energy

of fusion which can be apportioned that is in fact apportioned is 4. When AI

is negative, the free energy of fusion which can be apportioned is abiAf -

(-AO, ) - 2aba; + 2bla, the amount in fact apportioned is A(2aba' + 2bla), and

the fraction of the free energy of fusion which can be apportioned that is in

fact apportioned is A. If we always choose the same value for A and 4, then

over the whole range of values for A01 , the fraction of the free energy of

fusion which can be apportioned that is in fact apportioned has the same

value. Let 7 denote any particular value which is chosen for both 4 and A,

where 0 : 7 5 1.

As will be seen, the symbol I has been introduced for clarity.

Recall that 'U, but an expression for A in terms of A' or vice versa still

needs to be obtained, and furthermore, equal values of 4 and A do not in

general imply the same value of A'. In our approach, then, A' depends at

least on the sign of A0 1 , but nevertheless, our approach has only one

parameter, 1--the fraction of the free energy of fusion which can be
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apportioned that is in fact apportioned--which is a constant over the whole

range of values for A01.

In summary, the barriers in terms of the apportionment parameter 7 are

A01 + El - (l-7)(2aba' + 2blo)

I for A01 : 0

E- ablAf - 7(2aba' + 2bla)1 - e

A01 + El - 2aba' + 2bla - 7ablAf

for AI 0

E- (1-7)ablAf

where we now observe that (l-7)(2aba' + 2b2a) - 2aba' + 2bla - 7ablAf when A01

- 0, i.e. A01 + El is a continuous function of I and Af at the points (1,Af)

for which A01 - 0. Note that the greater the value of the apportionment

parameter 7, the smaller the value of both A01 + El and E1 .

Next, an expression for ' in terms of A is to be derived. Given AO1 +

El - (l-A)(2aba' + 2bla) for A01 < 0, one can first find 0 when A61 < 0 holds

in terms of A by equating the expressions

(l-A)(2aba + 2bla) - 2aba' + 2bla - OablAf
e e

whence

(7 2a"

Clearly, equating these expressions and expressing when A01 < 0 in terms of

A is valid since decreasing 2aba' + 2bla by an amount OablAf must be

equivalent to decreasing 2aba' + 2bla by A(2aba' + 2bla). Note that the
e e

expression ( + is always less than one when A01 is negative. (To see

this, simply observe that Ao1 < 0 implies 2aba; + 2b2a < ablAf, and then
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divide both sides of this inequality by ablAf.) But @ - for all values of

A01 so that

( 2a' 
2

1' - + 2oZ)

Note that since A cannot exceed one, the largest possible value of V °, i.e.

the ~~ ~ ~ 2 ' up e2im t o 2 , i)I & E
the upper limit on +, is + for A I < 0; as mentioned previously,

this upper limit is indeed less that I for A01 < 0.

For completeness, one can also find A when A I > 0 holds in terms of i by

equating the expressions

(1-A)(2abal + 2bla) - 2abac + 2bla - OablAf

whence

I ~f +aAf

Clearly, equating these expressions and expressing A when A01 > 0 in terms of

is valid since decreasing 2ab°' + 2bla by an amount OablAf must be

equivalent to decreasing 2aba' + 2bla by A(2aba' + 2bl0). Here again, - 1
e e

Note that I Af+ is always greater than one when A01 is positive.

In summary, then, for A01 : 0, one chooses a value from zero to one for

the parameter 7, whence A - y, and then calculates A - A( + ). For A01

0, one chooses a value from zero to one for the parameter 7, whence 4 -

and then calculates A - 2a' 2a For all A01 , 0 - T-. Thus,

f 
-

for A01 -0

2,o
f +_f Ef]
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#b-Y

for 1

A r2a'
-f2 2a)J Af + a -

Incidentally, the constraint 2aba' + 2bla - OablAf 0 combined with 0 : , 1

e

implies that the inequality (2o
0 :5 0 1 the smaller of 1 and ef + ZE

must be satisfied, and clearly our theory has satisfied it.

Similarly, the constraint ablAf - A(2abae + 2bia) 0 combined with 0 : A 1

implies that the inequality
1

0 : A : the smaller of 1 and f2ar 1

'e aAf
must be satisfied, and clearly our theory has satisfied it.

The approach developed above can readily be applied to incorporate into the

model the constraint that E2 be nonnegative. Here, E2 -
2abae - OablAf can be

negative when E is positive, and E is always positive (except when I - 2ae/Af ,

which gives E - 0). The requirement E2 2 0 implies that one is not allowed to

apportion all of the free energy of fusion ablAf. If the amount 0ab2Af which

is apportioned were to exceed 2abae, then E2 would be negative. Therefore,

one has E2 - n2abae where n is an apportionment parameter with 0 : q < 1. And

E+E 2 - -2 abae + ablAf + q2 abae - ablAf - (l-n)2abae. For convenience, make

the change of variable e - 1-n with 0 : e : 1 so that for all I and Af

E2 - (l-) 2 aba e and E + E 2 - ablAf - 82 abae.

Observe that the barrier E + E2 to the destruction of the second and each

subsequent stem cannot be smaller than the free energy increase E that occurs

upon its destruction, which implies that an adsorbed second or subsequent stem

cannot completely crystallize before the barrier to the formation of that stem
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is surmounted, i.e. that the upper limit, determined below, on " is less than

1..

Giv E2 - (l-e)2abae, one can find 0 in terms of e by equating the

expressions

(1-e)2 abae - 2 abae OabAAf

whence

2oe

Clearly, equating these expressions and expressing 0 in terms of 0 is valid

since decreasing E2 with 0 - 0 by an amount OablAf must be equivalent to

decreasing it by 82abae. Note that the constraint 2able - OablAf t 0 implies
2o e

that the inequality 0 s 0 : 2 must be satisfied; since 0 se 51 holds, we
2a

have indeed satisfied this inequality. Also note that 2 is always less than

2a
or equal to one since .2 2 _ has been established. (Incidentally, 2abae

2ae 2ae e

OabAtf 0 does not imply constraints 1 S e Af < e , or a 2

Finally, recalling that - - and substituting above gives " - -e
.2 Af"

In the special case 7 - e - 0, our model reduces to the case b - - 0 of

the LH model which permits negative barriers for nonzero b.

VI. DETERMINATION OF THE SIGN OF A01

At this point, one needs to determine when AI is positive, zero, and

negative. Now A01 - 2aba' + 2bla - ablAf 0 implies bl(2a-aAf) > -2abae; and
ee

there are three cases to consider.
-2aba e

Case (a): 2a - aAf > 0 or Af < 2a.f Then the inequality I > b2a-)

is always satisfied since I is always greater than zero, and hence A01 > 0

holds.

Case (b): 2a - aMf - 0 or &f - 2L9. Then A01 - 2aba;, which is alwaysa

positive or zero depending on a'
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Thus, combining cases (a) and (b), we have A41 2 0 for all I when Af <

2co2
a (So far, A01 is zero only if both a; - 0 and Af - )

Case (c): 2a - f < 0 or Af > 2  Then A01 > 0 implies -bl(aAf-2o) >

2a'e
Af

-2abal or 1 : 0 . Thus, when Af > a, Aae 1- 2a o a _ 0 holds for 10, and
aAf

A01 : 0 holds for 1 2 10. (Observe that as Af - 2 from values greater than
a

a, 0 - a.) There is, however, one further condition to consider here.

Recall that 2 2 2- has been established. If 2 < 2a holds, then I > I

0 Af hodte0
holds and consequently A01 < 0 would hold for all 1. To determine when 10 <

2a' 2o"

e2a -.922

e Af e ou-holds, simply write ii:< -f, and noting that 2a < 1, rearrange this
a1-a

2a~ Gee 2ainequality to get a~ Now, if a e :5 a;, this inequality would be aMEf

ee0, which is never satisfied; hence I0 < Lft never occurs when ae : a'.I

2a 2a ( e l oA
> a', f < - occurs when f > -. s e> and

Ge e 0 f-- Thus, if > a nd e a

-5 a T---- , A01 2 0 holds for 2 : 10 and Ao1  0 holds for I 2 10, but for Af
a ae ' -Ae

e~
> 2 (, A01 < 0 holds for all 1.

VII. EXPRESSIONS FOR STotal (T) AND I(T)

If ae : a', our model with no negative barriers has

2a
(1) Ao +E I  - 2ab o +2b a-7ablAf for Af _< -a

(2) AoI+E l - 2abao+2ba--yabIAf for Af > a and 1 : 0

(2) AoI+E I - (l-7)(2abo;+2bla) for Af > 2a and I 2 10
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and if a > ae e

(1) Ao1+EI - 2aba'+2bla-TablAf for Af 5 2ae a

aa
(2) AOI+E1 - 2aba;+2bRa-yabIAf for < Af < e a

a a (3e _a and 1:510

(2) AoI+E I - (l-7)(2aba'+2bla) for a < 1 2t an

(3) AOI+E I - (1-7)(2aba'+2blo) for Af > 2 ( .e)

The purpose of categories (1), (2), and (3) will be seen shortly.

When AoI+E I - 2aba; + 2blo - 7ablAf, E1 - (l-7)ablAf, which we call Case

I.

When AoI+E I - (l-7)(2aba; + 2bla), E1 - ablAf - 7(2aba; + 2bla), which we

call Case II.

One always has

E2 - (l-e)2aba
e

E+E 2 - -2 abae + ablAf + E 2 - ablAf - e2abae

Also,

NoA0 (l- A)
S(I,T) - B+ A

A A

where e-E/kT B1  -(EI-E 2 )/kT (AOI+EI)kT
wee - e , and A0 - e

Abbreviate c 2aba a - and recall I e Th

Abeit '- kT ,c i kT ' - , -~ Af.

c abAf q, _ 2T and -- c + 1. For Case I,

kT IEkT 2bkT 1

Aol+El 2ab' ~ ,'b~

kT -kT kT kT -kT 1
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E - (1--Y)ablAf (l-e)2abae - i-) -(-

kT kT kT1 171-(Oc

For Case II,

-O+E (l-i)(2aba+2b~,) 
- l-)'

kT kT +11

E1 -E2  abIAf-7(2aba'+2bla) (1-i )2abce

kT -kT - kT 'I 1a-)-c'(-~1

For Case I,

1,) -e ~c e -cl/I 1 + e (lO)C e-(l-7)cI/I1

For Case II,

fiN0 -(-7c'e -(1-7)c1c/1l (1-ece-cl/11)

S11 (I,T) - ece-c/1 1 + e(l O)C e yc f e (l 7)C I/I 1

For any Af in category (1), then,

S~)(T) - 1 f 1 ,T) di and - 1(T

For any Af in category (2),

S(2) (T) - A- Jl S1(I,T)dl + F~J S11(I,T) dI

and

f10 S(I,T)dA + J I S 1 (I,T)dl

fl SIjA,T)dl + r,S 1 (I,T)dl

For any Af in category (3),

Totali(T) - f1 S 1 (I,T)dA and 1 3 (T)-

U 1~ S 1 ,T)dI

For purposes of comparison, the LH model which permits negative barriers

has, for all I and Af,

AOEi- 2abal + 2bla - ibablAf and E2- 2aboe - Oab1f&
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so that
El E2

-1

and

SaUi)(1,T) - PNO  e 'coe C(aR0)1/ 1  (1-eCe-Cl/1)

lec e-C./11 + ec e-(l-0+0)c1/21

and

s (li)  T) - f s (LH)(1,T)dg and 1( U)(T) I 1

T o al 'f 2 s (L H ) ( 1,T )d l
1

As is the case in the LH model, our model has two parameters. The most

logical choice for 0 is 0 - 7; however, even with 0 - 7, our integrals cannot

be evaluated analytically. There seems to be no special case (other than 0 -

I - 0) for which they could be evaluated analytically. At this point then, we

proceed without setting 0 - 7.

VIII. EVALUATION OF THE STotal(T) AND I(T)--THE VARIABLE TRANSFORMATIONS FOR

THE NUMERICAL INTEGRATIONS

The required numerical integrations were easily performed interactively

on the VAX using the IMSL subroutine DQDAGS. Integrals to be evaluated using

DQDAGS cannot have an infinite limit of integration. One way to proceed

before using DQDAGS is to make a change of integration variable. Although

DQDAGS can integrate functions with endpoints singularities (when the

endpoints are finite), a change of variable which results in a transformed

integrand which is bounded at all points including the finite endpoints in the

new range of integration, is preferable to a change of variable which yields

an improper integral albeit with finite integration limits. For each of the
integrals appearing in SM( T) , S ( 2 )  (T) and S(2)() av

t oe tei n Total \  Total( , a variable

transformation which resulted in a proper integral was in fact found. The
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same transformations did not transform the corresponding integrals in the

numerators of (11 )(T), 1(2)(T), and 1(3)(T) into proper integrals; however,

the transformed integrands were of the form (-in x)f(x) with the singularity

resulting only from the factor in x as x - 0. This endpoint singularity could

be handled by DQDAGS.

Consider first the integral in S(l) (T) The variable transformationTotals er

consists of defining

x m e(l-Y)c e-(1-7)cA/A1

Note that x(A -) - 0; the constant e(1-7 )c, i.e. the I-independent factor,

is chosen so that x(I - 1)- 1. Solving for I in terms

of x gives I - 11l _ ln x provided I o Then d- - ( 1(-)dx(l--Y)cJ • (I-7)c "

a -Y 1

Furthermore, e-'(a')cI/A 1 - e-(a-i' )c xI--Y e -cl/1 -e-c xl-y , and

e- (17)CI/A1 - e " (I-Y)c x so that

-c -(a--y)c 1
S a(T)- #N e e l x-1 (l-x 1 -)

- + e(1-O)c -(I-7)c
+lexl0)+ e

Simplifying gives

() N0 e-c'e -(a-y)c 1 txl1 1x-7

Tl (T) - u (1--7)co I dx
otlIu 

l-x1 - + e" (6-B)c x

This is one of the integrals that was evaluated numerically by DQDAGS.

Designate the integrand above as fl(x). Using the same variable

transformation to evaluate the numerator of I1)(T) gives
1 I(n x ff(Xd 1 (-ln x)fl(x)dx

) (1)(T ) .f oil "(1 - 7)Y c ] -l d I 1 + 17) i(

f- fl(x) dx 1 Ii + 1o f,(x) dx

Next, using the same transformation on the integral f 11  (IT) dI

appearing in S(2) (T) givesTotal
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S1(2,T)dP - fNe oe(--y)c2 1J1fi x) dx

where

-0 x(I-1 0) - e -(l-y-(-)cI 0 /ll - e(l-7)c e-17c/'Q

with 20- 2a;/(l-a)Af as defined previously.

Similarly, the integral 0 S1(2,T)d2 appearing in 1()()becomes

f- PN~e_ -c e -(a--y)c l 1 l Jxf2xd ly~ 10 n l
2 II2,)dl-(l--Y)c 2 x0f~~x+ (17l r1.(-I x)f 1(x)dxl

A different transformation is made on the integral f0 S11 (2,T) di also
appearing in S(2 )l(T). Here, define

x-=e (l-7)(c-c') e-(7all1

Again x(2~- 0; the constant e(1l7)(c-c') is chosen so that x(1-10) - 0

r 11CCI
which is given above. Solving for .e gives 2 - - c- nx provided -y o.

Lc (1--Y) I

1. Then d2 - la ~ dx. Furthermore, e-(-)C/ e(-)cc)x,

1 -(C-C'M(-01-) 1-"r

e-c1/2 1 - e-(c-c')/a X(l--)a , and e-(l-a)cI/li 1 e a (7a

Substituting gives

0 (1-7)cc

fo fci-ce(i(T' 1 fcTJla' -j01 (X dx

1~ec e ~ x(1-y)a + e(l 9P)c C
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ON 0 e i r-0 -ce x(l-e)a
.( --y)ac [c 1 --cj .e .

c ".I 1-"a,

l-eCe x (l- )a + e(07)c eC e x

Designate the integrand above as f2 (x). Thus,

S(2)l(T) - (fiN 0e e J-1f(x)dx)+-N0 e'('J)c21 f0f dx)

T Iu  +

Similarly, the integral F 2S11 (I,T)d2 appearing in 1(2)(T) becomes

eS1 (IT)dI-Noe-(l-)cl1 {(c-c') I J0 f2 (x)dx+ (-n x,(x)dx

10ll 2 z~ 2  (l-7)ac a c 0 2(l--Y)ac o(lxf

Therefore,
0 I RSI0I,T)dl] N jIT)dl]

fiN 0  Total'

with the appropriate expressions for the integrals and S(2a(T) to be

substituted above.

Finally, consider the integral in S(3)(T). The variable transformation

to be made on this integral is

x M e (l-7 )ac e (l'-7)accl/l1

Again x(I - w) - 0 and the constant e(l -7 )ac is chosen so that x(I-11 ) - 1.

Solving for I gives I - 1i [1- ln x 1 provided -y 1. Then dI -
L (1--y)ac e

(l-)ac ( dx. Furthermore, e (l'7)ac/l 1 - e(l-7)ac xec/I 1 .
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1 1- a-

e -c x(l-Y)a , and e-(l- )cl/11 - e "(l a -)c x (l-Y)a so that
1

S-3)No e -(l-7)(c'+ac)l1 (1 (lx ) d

Total Tu (1-7)ac 1 1 dx

l-x(l'vY)a + e-oc e Y(c'+ac) x(l-v)Q

Designate the integrand above as f3 (x). Using the same transformation to

evaluate the numerator of 1(3)(T) gives

1 l(-ln x)f3 (x)dx

- 1 + (l-7)ac 1 f3 (x)dx

0

IX. RESULTS AND DISCUSSION

A VAX FORTRAN program was written to evaluate the required mathematical

expressions. The program contains the statement CALL DQDAGS; and this IMSL

subroutine performed the numerical integrations. All calculations were done

double precision using the model parameter values given in Figure 3 of

82 2
Reference 1; namely, a - b - 5 x 10-8 cm, a - 10 erg/cm , a e - 100 erg/cm2 , Tm

- 500 K, Ah - 3 x 109 erg/cm 3 , and Af - Ah(T; -T)/T;. The average lamellar

thickness calculated from the LH model is independent of a ; this is true for

our model only for Af < 20, however. Other quantities such as STotal(T) do

depend on a' even in the LH model, and physically, one expects 0 : a' : a
e e e'

In the case ae - 0, our model is slightly simpler, for then
e

2a41+ E1 - 2blo - yablAf Af_< 0a

E41 + El - (l-7)2la Af > 2a

Let us investigate our model in detail for the case a' - 0 first; this is also
the somewhat arbitrary choice for a$ made for the calculationsI ,2- for the Ili

e

model.
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Given the parameter values above and now with the choice e-7 , the

calculated average lamellar thickness vs. tewperature curves (I vs T) are

plotted in Figure 1 for the selected values of 7 - 0.0, 0.50, 0.75, 0.90, and

0.95. Some of the data used to construct these plots is given in Table I.

(For Af < a the average lamellar thickness is given by the expression for

(1)(T) given previously and for Af > 2, by the expression for 1(3)(T) also
a

given previously.) The effect of I on I as a function of T is readily

apparent. For 7 - 0 and 7 - 1, 2 decreases monotonically with decreasing T,

but for 7- , there is indeed a break or discontinuity in the slope cf 2 vs.

T, albeit barely discernible, at the temperature T* for which Af - 2a, i.e. at
a

T - 4331 K. (This statement will be qualified later.) As for ,- , fory3 2'
-4 .9, and .95 decreases with decreasing T for all T for which Af > a-, and

there is a break in the slope of 2 vs T at T - T*. Unlike for 7 - 1, the

plotted 2 vs T curves for 7 - , .9, and .95 pass through a relative minimum
4m

at a temperature for which Af < 1-; the temperature T* at which this relativea'
3

minimum occurs appears to increase with increasing 7 (for v -I, it occurs

between T - 440 and 4331 K and so can hardly be seen on the plot). Also, over3

the interval T < T*, 2 vs T is at a relative maximum at T - T*; and

increases more rapidly as T approaches T* both from values greater and from

values less than T* the larger the value of 7. Note that at least for all

values of Af > 2, 2 at a given T is larger the larger the value of 7.
a

For comparison, we have reproduced Figure 3(b) of Reference I as our

Figure 2, which shows the LH model 2 vs. T curves with - 0 for the selected
values of -0, .1 -1 1 2, .9, and .95 Some of the data which we

valus o V -0,' 3' 2' 4'

calculated in order to construct these plots is given in Table II. The LH

model i - 0 curve is identical to our 7 - 0 curve. For Af < 22, each of the

LH model "0 curves" is qualitatively similar but not quantitatively identical

to its corresponding "7 curve" presented in Figure 1. Recall that the

quantitative difference arises fromn the fact that the barrier E2 has been

2a
constrained to be nonnegative, i.e. E2 - (l-0) 2aboe. For Af > a , however,

the Li model 0 curves are in marked contrast to the 7 curves; in particular,
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for each 0 curve, I approaches infinity asymptotically as Af approaches 2a
Oa'

This is the behavior which is known as the 62 catastrophe. The above features

of the LH curves for 0 : .95 also apply to LH curves for .95 < 0 : 1;

calculations for the special case 0 - 1 can be done using the analytical

expression obtained from I(LH)(T) in the case 0 - 0. The curves for .95 < 0 S

1 are similar to the 0 - .95 curve; Figure 3(b) of Reference 1 gives a sketch

of the I 1 curve, which exhibits the 61 catastrophe at Af - a

By contrast, the 7 curves for high values of - less than one do not

exhibit an infinite average lamellar thickness. Curves for I - 0.99 and - -

0.998 are presented in Figures 3 and 4, respectively, and do exhibit the

features described previously for the 7 - -, .9, and .95 curves. Again, for

Af < 22, the curves for 7 - .99 and 7 - .998 are qualitatively very similar to
a

LH curves with i - .99 and @ - .998, respectively. Calculations for 7 > .998

as well as for 1 - 1 apparently cannot be done using the expressions for

(1J)(T) and 1(3)(T) as a result of the factor (l-1) appearing in various

denominators.

One point is worth emphasizing here; namely, the relationship between -

and 4. In both our model and the LH model, ' - but this ratio in the LH

model is a constant, whereas in our model

',e + 2a A1 :5 0

0 -1

For the case a' - 0, this becomese

2a f 2

aAf a

a
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Now, for any given 0, say I 2 in the LIH model is infinite for all Af 2a

and for all Af 2_a, there is no finite value of I for any 10 a 0

Equivalently, a value of 1 2 Oj is not possible for a chain-folded system for

all Af > -2a that is, high values of 0 do not lead to chain-folded polymer- a

crystals at high enough supercooling according to the LH model. Experiment,

however, gives chain-folded crystals at high supercooling with an average

lamellar thickness that decreases monotonically with decreasing temperature.

As we have seen, our one-parameter (i.e. -) model with a' - 0 does reproduce° ° e

this high supercooling behavior. And yet, high values of @, i.e. of the ratio

-- are not associated with our high-supercooling chain-folded systems. To

see this, first introduce the dimensionless quantity x, where 0 < x < 1. Then

for any Af -a2-, 0 - Iy - Ix. Since 7 cannot exceed one, 1 in our model

cannot exceed x. for any Af aj, where xj is any given value of x. But this
.3 j

is exactly what was found for 0 in the LH model, i.e. that a value of'o
greater than or equal to is not possible for any Af 2 a . Thus, for Af >

2a
a , our model, through the imposition of the constraint that barriers be2a
nonnegative, places exactly the same upper limit, a ,f on our 0 that is

predicted for 0 in the LH model. However, for Af > 2, our model, unlike the
a

LH model, predicts 2 vs. T in qualitative agreement with experiment for all

values of our model parameter 7 less than one.

Thus, the selected calculations done for our model indicate that, for the

case a' - 0, our model does not exhibit an infinite average lamellar thickness

for any value of v less than one. Most importantly, at least for all T for

which Af >a our calculations indicate that our a' - 0 model predicts I vs.
a' e mdlpeit s

T curves which are monotonically decreasing with decreasing T in agreement

with experiment. That is, we have successfully extended the LH model to

highest supercooling. This success coupled with the numerical results shown

in Figure 1 increases our confidence in using low values of - such as T - 0 as

3first approximation for convenience in practice. Our model curves do show
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an anomaly, i.e. a break-in slope, at T - T*. We strongly suspect that there

is indeed a break in slope at T - T* because the relation

2a 2a
7 aAf a

- a

aa

implies that dT is discontinuous at Af - 2-a; however, we have not yet
evaluated d' at Af- 2a This anomaly is apparently negligible up to I values

of about 1, where the slope of I vs. T has the same sign (positive) regardless

of whether the point Af - 2a is approached from values of Af higher or lowera
than -'L. As 7 increases, however, this anomaly becomes pronounced with the

concomitant appearance of a relative maximum in 2 at T - T* and a relative

minimum in 2 at T - T,; necessarily then, the slope of 2 vs. T as Af

approaches 2a from values less than 2-a becomes negative. We will refer toa a

this undesirable behavior, manifest at high values of 7, as the 2 anomaly.

Unlike the 61 catastrophe in the LH model, the relative maximum in vs. T, as

noted above, always appears at Af -a for all values of 7 given that a' - 0.
a e

Despite the I anomaly, we see that the exclusion of negative barriers--the

only difference between our model and the LH model--has strengthened the

Lauritzen-Hoffman approach to polymer crystallization.

One set of results with 8 -7 is presented in Table III. Here, we see

that for and - 1, the calculated I(T) differ only slightly from the

case with - and -.

Next, we investigated our model for a' 0. (Recall that 2 for the LHe

model is independent of a' and that our model is independent of a' for Af <e e
a.) Using the same values for a, b, a, ae , T;, and Ah as above and again

with 8 - 7, 2 vs. T curves for a' - 0, 60, 100, and 150 erg/cm2--each with 7 -

construct these plots is given in Tables IV and V (and the a' - 0 data hase

been seen previously in Table I). From Figure 5, we see that 2 vs. T is

relatively insensitive to the value of a' for 7 - 2" For a' - 0, 60, and 100e 2 ~ e
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erg/cm 2 , 2 decreases monotonically with decreasing T, although for a; - 100

erg/cm 2 , the 2 vs. T curve is almost flat near T - 405 K. For a" -

150 erg/cm 2 , there is a relative minimum in 2 vs. T near T - 405 K, and the

curve passes through a small and "diffuse" relative maximum at a lower

temperature. Recall that one expects 0 : a; : ae so that with ae -

100 erg/cm2 , a' - 150 erg/cm2 may not be realistic but is examined in order to

eeexplore the model predictions as a function of a'e2

The 2 vs. T curves for a' - 0, 60, 100, and 150 erg/cm2--each with I -e

--are presented in Figure 6. The curves pass through a common relative
K2a adte ec uv

minimum between T - 440 and 433K -), and then each curve

rises and passes through a relative maximum, that maximum being relatively

higher and occurring at higher Af the larger the value of a'. At each

maximum, there would appear to be a break in the slope of 2 vs. T; the slope

of 2 vs. T as Af approaches 2 both from values greater and from values lessa

than 2 is greater in magnitude the larger the value of a'. Having passed
a e

through its maximum, each curve decreases monotonically with decreasing T

thereafter.

One should be careful to note that what appears to be a break in the

slope of 2 vs. T when a; o 0 is probably not a break in slope; d2) (T) should
slopeof edT

be continuous for all relevant T. Whether a break in the slope of 2 vs. T

occurs at Af - 2 when a; , 0 as was presumed true for a; - 0 cannot be
a e

determined conclusively from the appearance of the graphs, although the break

appears to be absent.

Qualitatively similar 2 vs. T curves are obtained for 7 - 0.9 and a" - 0,

60, 100 and 150 erg/cm 2 as is shown in Figure 7. Here, the relative maxima

are higher and "sharper" than the corresponding 7 -2 curves, and they have

moved to higher temperature. For y - 0.99, the analogous curves, shown in

Figure 8, exhibit 2 values which are unrealistically large as well as maxima

which are extremely "sharp".
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The relationship between 7 and v with a' 0 0 is worth emphasizing at thise 1'

point. To reiterate, in both our model and the LH model, 1 - -, but this

ratio in the LH model is a constant, whereas in our model

_ ae + ) AI(l,T) < 0

7AI(,,T) T- 0

where the notation O(I,T) and AOI(I,T) emphasizes here the dependence of 0 and

A01 on I and T. (The T dependence, of course, enters through Af.) Recalling

the conditions which govern the sign of A01 then gives when ae > ae

for all I when Af >2a e -

. f +e 2q
Af +for I > I when 2a < Af 52a e

0((,T) - {

for I s Iwhen a2 <Af<2 e)

for all I when Af _5 a

and when ae _5 a

2a'

- +for I X0 when &f > 2a

(for I sI 0 when Af >-
7 01

for all I when Af _< 2
a

2a'e

where - Af Now, on an I vs. T curve, one has0 _2a•,a f
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{ 2ae +2a'
7 A 1 (2,T) 2 0

where the conditions which govern the sign of A 1 (2,T) are those given above

for A 1 (1,T) but with I replaced by 2. Therefore, the temperature To of a

point (20' TO) on an 2 vs. T curve and at which A0I(2,T) - A 1 (20,T0 ) - 0 is

the solution to the following non-linear algebraic equation in the one unknown

T:

2(2)(T) - 10

or

10 2a'

.2 Is dl+f1eS11 di e
f SId+l Id afjlo SldI+ JSid2 -

If a > a , TO will correspond to a value of Af in the range 2 < Af

2a 'e e ' but if ae : a;, TO will correspond to a value of Af in the range

Af > 2a

a'

Rather than attempt to solve the above equation iteratively, one simply

plots the left-hand side 2(2)(T) vs. T and the right-hand side l0 (T) vs. T on

the same graph, and T0 is given by a point of intersection of the two curves.

Note that as Af approaches 2a from values greater than 22, 0 approaches

a aa
infinity and that I0 decreases monotonically with decreasing T for Af > a2-

For each of the 2 vs. T curves with a; o 0 presented in Figures 5 through 8,

we found one point of intersection (201 TO), which is designated on each curve

in the figures by an open circle. We also found that 2(2)(T) > 20 holds when

T < To and that 2(2)(T) < 20 holds when T > To . Thus, 60(1,T) < 0 holds for T

< To and AO(2,T) > 0 holds for T > To . Our final result is that, on an 2 vs.

T curve, (2a'e_ + 2a < TT 0

To : T < T;
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Note that if the dimensionless quantity x, 0 < x < 1, is again introduced by

writing Af - x_ 7 - + i so that, unlike the case o' - 0, 0 can exceedxa' 10e

x for some Af !- 2, where x is any given value of x. Clearly, one can
xj x a

easily calculate 4 for each point on the a' 0 0 2 vs. T curves, but we have
e

not yet done so.

Thus, from the graphs, we see that the I anomaly becomes more pronounced

but moves to higher temperature as 7 increases for a fixed nonzero value of

a'. That is, although the relative maximum in I vs. T can appear at some Af >e •

a22 when ;' is nonzero, the maximum becomes less pronounced as it moves to

lower temperature upon an increase in 7. Our model, then, does not fail at

high supercooling, but does exhibit anomalous behavior for temperatures

corresponding to values of Af "Just" greater and "Just" less than 2-. This
a

undesirable behavior is pronounced for large values of 7 and is more

pronounced for larger values of a; for a given 7.

We can easily rationalize mathematically how our calculated I vs. T

curves can rise with decreasing T for some Af > 26a when a; is nonzero. Recall

that the expression for j(2)(T), namely

f~~T 10 IS1 (.e)dI + r S1 1 (I,T)dI1 0

f 0 SI(2,T)dl + SII(I,T)dl

contains two different integrands SI(I,T) and SII(I,T). Depending on a', e,

and T, the contribution of the integrals involving SI(I,T) to 1(2)(T) may

outweigh the contribution of the integrals involving SII(2,T), and in some

cases, our calculations show that to a very good approximation

f1 0 SI(I'T)dI

1 2 )(T) - 1 with I approaching infinity.
10 0

fj1Sk ITd
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But this is our expression for 12)(T) for the interval Af a , and thea'
results of our calculations using 21)(T) have been found to differ little

from results using I(LH)(T), i.e. the LH theory. Not unexpectedly then,

2(2) (T) can increase with decreasing T for some Af > a . We note that thea
numerator of SI(2,T), like the numerator of S(LH)(1,T), contains the factor A0

- eco e- bl(2o--a A f)/kT the form of which has been associated with7 increases

in I with decreasing T.

X. CONCLUSIONS

Thus, the I anomaly is apparently connected to the expression A4, + El -

2aba' + 2bla - 7ablAf even when the maximum in 2 vs. T occurs at a temperaturee
for which Af exceeds 6. Our results with a- 0 clearly indicate that the

anomaly--and in part the 61 catastrophe of the LH theory--are associated with

the interval Af : a and are thus connected to the expression AOI+E I - 2abau +a
2bla - 7ablAf. Even when high values of - or b are considered unrealistic as

has been elucidated3 recently, however, there is no guarantee that the LH

theory as well as our extension of it has not failed to incorporate an as yet

unknown constraint or feature which would improve the model results at high 7

values. For example, high 7 values may be unrealistic, but the I values for

high 7 from an improved model may simply be unrealistically large but

nevertheless monotonically decreasing with decreasing T for all T. Further

work along this line would probably be mostly of theoretical interest rather

than essential for use in practice.

Although the I anomaly remains in our model, we have shown that the 61

catastrophe of the LH theory is in part related to the failure to exclude

negative barriers. Furthermore, our model is successful, for it shows that

the Lauritzen-Hoffman approach to polymer crystallization, subject to the

exclusion of negative barriers, is consistent with experimental behavior at

very high supercooling. We conclude that we can safely extend our version of

the LH theory to treat systems interacting with an external electric field.
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FIGURE CAPTIONS

Figure 1. Plots of Average Lamellar Thickness vs. Temperature for 7 - 0,

2' 4' 0.90, and 0.95, each with ae - 0. See text for a, b, a,

ae, T*, and Ah which are the same for Figures 1 through 8.

Figures 1 through 8 have 0 - 7.

At T - 433 K (i.e. Af - a), A, 1 - 0.
For T a 433 K, A@I a 0 and 4i - 7.

1 2
For T > 4331 K, A01 ; 0 and 0 -

Figure 2. Plots of Average Lamellar Thickness vs. Temperature for - 0, ,1 1 09

' 2' 4 0.90, and 0.95 reproduced from the Lauritzen-Hoffman

Model (Reference 1); plots are independent of a .

Figure 3. Plot of Average Lamellar Thickness vs. Temperature for 7 - 0.99
and a' - 0. Again, for T 2 4331 K - and for T : 433 1 K,

an e' 0 3 .3

Figure 4. Plot of Average Lamellar Thickness vs. Temperature for 7 - 0.998

and a' - 0. Again, for T : 4331 K, -yand for T s 4331 K,
e 3 3(2a)

Figure 5. Plots of Average Lamellar Thickness vs. Temperature for a' - 0,

60, 100, and 150 ergs/cm 2 , each with 7 - . Each open circle

designates the point (20, TO) at which A 1 (2,T) - 0. For T 2 To,

(2a'
A 0 and 0 -7. For T 5 To , A01 : 0 and (, - e + 2q.

Figure 6. Plots of Average Lamellar Thickness vs. Temperature for

a; - 0, 60, 100, and 150 ergs/cm2 , each with 7- -1. Again, each

open circle identifies the temperature To (see Figure 5).

Figure 7. Plots of Average Lamellar Thickness vs. Temperature for

a' - 0, 60, 100, and 150 ergs/cm2 , each with 7 - 0.90. Again,
e
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each open circle identifies the temperature To (see Figure 5).

Figure 8. Plots of Average Lamellar Thickness vs. Temperature for

a' - 0, 60, 100, and 150 ergs/cm2 , each with 7 - 0.99.e

For a' - 0, 60, 100, and 150 ergs/cm 2 , TO - 433 K, 432.2 K,

432.1 K, and 432.0 K, respectively (see Figure 5).
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TABLE CAPTIONS

Table I. Average Lamellar Thickness as a Function of Temperature for

- 0, , and 0.90, each with a' - 0 and 8 - 7. See Figure 1.

Table II. Average Lamellar Thickness as a Function of Temperature for

- and 0.90 reproduced from the Lauritzen-Hoffman Model

(Reference 1), each with - and independent of a. Seee

Figure 2.

Table III. Average Lamellar Thickness as a Function of Temperature for

- , - 1, and a' - 0. See text for the usual values of

a, b, a, ael T;, and Ah.

Table IV. Average Lamellar Thickness as a Function of Temperature for

a' - 60, 100, and 150 ergs/cm 2 , each with 7 - . See Figure 5.e 2

Table V. Average Lamellar Thickness as a Function of Temperature for

a' - 60, 100, and 150 ergs/cm 2 , each with 7 - 0.90. See
e

Figure 7.
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Table I. Average Lamellar Thickness ( ) vs. Temperature (K)

TEMP (K) Ps,=Gamma=0 Gamma=1/2 TEMP. (K) Gamma=0.90

485.000 234.383 235.303 485.000 236.013

480.000 178.390 179.781 480.000 180.939

475.000 144.660 146.556 475.000 148.300

470.000 122.074 124.507 470.000 127.027

465.000 105.867 108.867 465.000 112.435

460.000 93.652 97.253 460.000 102.279

455.000 84.105 88.342 455.000 95.475

450.000 76.429 81.344 450.000 91.672

445.000 70.115 75.762 445.000 91.275

440.000 64.826 71.267 440.000 96.119

435.000 60.328 67.641 435.000 112.616

430.000 56.451 63.528 430.000 117.625

425.000 53.072 59.481 425.000 109.730

420.000 50.100 55.988 420.000 103.882

415.000 47.463 52.941 415.000 99.316

410.000 45.105 50.259 410.000 95.563

405.000 42.984 47.877 405.000 92.353

400.000 41.064 45.744 400.000 89.529

395.000 39.316 43.821 395.000 86.992

390.000 37.718 42.077 390.000 84.676_

385.000 36.251 40.484 385.000 82.538

380.000 34.897 39.023 380.000 80.545

375.000 33.644 37.676 375.000 78.673

370.000 32.480 36.429 370.000 76.905

365.000 31.396 35.270 365.000 75.225

360.000 30.382 34.188 360.000 73.622

355.000 29.433 33.176 355.000 72.087

350.000 28.540 32.225 350.000 70.612

345.000 27.700 31.329 345.000 69.190

340.000 26.907 30.484 340.000 67.817

335.000 26,157 29.683 335.000 66.486

330,000 25.446 28.924 330.000 65.194

325.000 24,772 28.201 325.000 63.938

320.000 24.130 27.513 320.000 62.714

315.000 23,518 26.855 315.000 61.519

310.000 22.935 26.226 310.000 60.352

305,000 22.377 25.624 305.000 59.210
300.000 21.843 25.045 300.000 58.090

295.000 21.332 24.489 295.000 56.992

290.000 20.841 23.953 290.000 55.913

285.000 20.369 23.437 285.000 54.853

280.000 19.915 22.938 280.000 53.809

275.000 19.479 22.456 275.000 52.782

270.000 19.057 21.990 270.000 51.769

265.000 18.651 21.537 265.000 50.770

260.000 18.258 21.099 260.000 49.784

255.000 17.878 20.673 255.000 48.810

250.000 17.511 20.259 250.000 47.847

245.000 17.155 19.856 245.000 46.895

240.000 16.809 19.463 240.000 45.953

235.000 16.475 19.081 235.000 45.021



Table II. Average Lamellar Thickness (R) vs. Temperature (K)

TEMP (K) LH Psi=1/2 LH Psi=0.90

485,000 235.785 237.166
480.000 180.224 182.177
475.000 146.926 149.552
470.000 124.780 128.225
465.000 109.027 113.507
460.000 97.290 103.129
455.000 88.251 95.962
450.000 81.124 91.560
445.000 75.412 90.139
440.000 70.789 93.098
435.000 67.037 105.777
430.000 64.009 160.924
425.000 61.610 O0
420.000 59.786
415.000 58.519
410.000 57.832
405.000 57.800
400.000 58.577
395.000 60.458
390.000 64.019
385.000 70.494
380.000 82.999
375.000 112.171
370.000 232.547
365.000 00

360.000
355.000
350.000
345.000
340.000
335.000
330.000
325.000
320.000
315.000
310.000
305.000
300.000
295.000
290.000
285.000
280.000
275.000
270.000
265.000
260.000
255.000
250.000
245.000
240.000
235.000



Table III. Average Lamellar Thickness (?) vs. Temperature (K)

TEMP (K) Theta=1

495.000 675.848

490.000

485.000 230.877
480.000
475.000 142.184

470.000
465.000 104.542

460.000
455.000 84.037
450.000
445.000 71.460
440.000
435.000 63.333
430.000
425.000 56.368
420.000
415.000 50.779
410.000
405.000 46.332
400.000
395.000 42.690
390.000
385.000 39.639
380.000
375.000 37.036
370.000
365.000 34.779
360.000
355.000 32.796
350.000
345.000 31.035
340.000
335.000 29.454
330.000
325.000 28.022
320.000
315.000 26.716
310.000
305.000 25.516
300.000
295.000 24.405

290 000
285.000 23.373
280.000
275.000 22.407
270.000
265.000 21.501
260.000
255.000 20.646
250.000
245.000 19.836
240.000
235.000 19.067



Table IV. Average Lamellar Thickness (R) vs. Temperature (K)

TEMP. (K) 0.5 // 60 0.5 // 100 0.5 // 150

485.000 235.303 235.303 235.303

480.000 179.781 179.781 179.781

475.000 146.556 146.556 146.556

470.000 124.507 124.507 124.507

465.000 108.867 108.867 108.867

460.000 97.253 97.253 97.253

455.000 88.342 88.342 88.342

450.000 81.344 81.344 81.344

445.000 75.762 75.762 75.762

440.000 71.267 71.267 71.267

435.000 67.641 67.641 67.641

430.000 64.735 64.735 64.735

425.000 62.454 62.454 62.454

420.000 60.723 60.743 60.743

415.000 59.214 59.577 59.584

410.000 57.306 58.874 59.005

405.000 54.856 58.337 58.984

400.000 52.149 57.582 59.533

395.000 49.469 56.411 60.296

390.000 46.971 54.852 60.919

385.000 44.708 53.035 61.120

380.000 42.683 51.095 60.800

375.000 40.874 49.136 60.003

370.000 39.252 47.220 58.842

365.000 37.791 45.385 57.434

360.000 36.466 43.648 55.882

355.000 35.253 42.015 54.261

350.000 34.136 40.486 52.625

345.000 33.100 39.056 51.009

340.000 32.131 37.719 49.436

335.000 31.219 36.468 47.918

330.000 30.358 35.295 46.462

325.000 29.541 34.194 45.072

320.000 28.766 33.159 43.746

315.000 28.028 32.183 42.485

310.000 27.324 31.262 41.286

305.000 26.652 30.390 40.145

300.000 26.009 29.564 39.059

295.000 25.392 28.778 38.025

290.000 24.799 28.031 37.040

285.000 24.229 27.318 36.101

280.000 23.681 26.637 35.204

275.000 23.152 25.985 34.346

270.000 22.641 25.360 33.526

265.000 22.147 24.760 32.740

260.000 21.669 24.184 31.986

255.000 21.206 23.628 31.263

250.000 20.756 23.093 30.567

245.000 20.320 22.576 29.898

240.000 19.896 22.076 29.253

235.000 19.484 21.593 28.631



Table V. Average Lamellar Thickness (R) vs. Temperature (K)

TEMP. (K) 0.90 // 60 0.90 / 100 0.90 // 150

485.000 236.013 236.013 236.013
480.000 180.939 180.939 180.939
475.000 148.300 148.300 148.300
470.000 127.027 127.027 127.027
465.000 112.435 112.435 112.435
460.000 102.279 102.279 102.279
455.000 95.475 95.475 95.475
450.000 91.672 91.672 91.672
445.000 91.275 91.275 91.275
440.000 96.119 96.119 96.119
435.000 112.616 112.616 112.616
430.000 174.477 176.464 176.575
425.000 201.468 297.598 429.985
420.000 167.419 248.786 364.401
415.000 144.110 205.816 292.407
410.000 128.691 177.388 245.551
405.000 117.747 157.689 213.621
400.000 109.503 143.241 190.563
395.000 103.012 132.137 173.106
390.000 97.724 123.283 159.389
385.000 93.301 116.014 148.284
380.000 89.520 109.905 139.076
375.000 86.231 104.670 131.286
370.000 83.324 100.111 124.586
365.000 80.723 96.086 118.740
360.000 78.366 92.490 113.578
355.000 76.210 89.245 108.971
350.000 74.218 86.289 104.820
345.000 72.363 83.577 101.051
340.000 70.621 81.071 97.602
335.000 68.974 78.739 94.427
330.000 67.408 76.559 91.485
325.000 65.912 74.510 88.746
320.000 64.477 72.574 86.182
315.000 63.097 70.740 83.773
310.000 61.765 68.993 81.500
305.000 60.477 67.325 79.347
300.000 59.227 65.728 77.301
295.000 58.013 64.193 75.351
290.000 56.831 62.714 73.487
285.000 55.678 61.287 71.700
280.000 54.551 59.905 69.982
275.000 53.448 58.566 68.329
270.000 52.367 57.264 66.733
265.000 51.307 55.998 65.190
260.000 50.265 54.763 63.695
255.000 49.241 53.558 62.244
250.000 48.233 52.380 60.834
245.000 47.240 51.226 59.462
240.000 46.261 50.096 58.124
235.000 45.295 48.987 56.819


